Home > An Error > An Error Analysis Of Runge-kutta Convolution Quadrature

An Error Analysis Of Runge-kutta Convolution Quadrature

This implies that the boundary32 100 200 300 400 500 600 700 800−400−300−200−10001002003004002000 4000 6000 8000 10000 12000 14000 16000−8000−6000−4000−200002000400060008000Figure 1: Poles of the integrand in (22), integration contour and curve|R(∆minz)|= Appl. Sci. 8, 405–435 (1986) MathSciNetMATHCrossRef2. A space-time BIE method fornonhomogeneous exterior wave equation problems. Source

Similar error bounds are derived for a new class of time-discrete and fully discrete approximation schemes for boundary integral equations of such problems, e.g., for the single-layer potential equation of the For a vector-valued function v∈Vs, we set∥v∥V:= max1≤i≤s∥vi∥Vif no confusion is possible.For a function w∈Cr([0, T ], V )and any interval τ⊂[0, T ], we set|w|Cr(τ,V ):= 1r!supt∈τ∥∂rw(t)∥Vand ∥w∥Cr(τ,V ):= max0≤ℓ≤r|v|Cℓ(τ,V Part of Springer Nature. Forρ= 0, with µ−ρ= 1 >−1, Theorem 16 then predicts a convergence rate likeO(∆3+1−3) = O(∆). http://link.springer.com/article/10.1007/s10543-011-0311-y

Lopez-FernandezS. Tensor Spaces and Numerical Tensor Calculus. Asin the proof of Lemma 14, we assume in more generality thatϕ(r)(0) = 0 ∀r= 0, . . . , ρ +m−1for some m≤q+ 1.To estimate the near field component we Anal. 29(1), 158–179 (2009)MathSciNetMATHCrossRef7.Hairer, E., Wanner, G.: Solving ordinary differential equations.

The idea is to express the convolution∗Gran Sasso Science Institute GSSI, Viale Francesco Crispi 7, 67100 L’Aquila, Italy, e-mail:[email protected] f¨ur Mathematik, Universit¨at Z¨urich, Winterthurerstrasse 190, CH-8057 Z¨urich,Switzerland, e-mail: [email protected] kernel kas Comput. 28(2), 421–438 (2006)MathSciNetMATHCrossRef14.Schanz M.: Wave Propagation in Viscoelastic and Poroelastic Continua. We will present the discrete equations and derive anassociativity property for the composition of Runge-Kutta generalized convolu-tion operators which allows to use the stability and error analysis as in Section4 to Numer.

and Visualisation in Science , 11, no. 4-6, 363--372, 2008 Preprint 23-2007 [7] Banjai, L. Runge–Kutta step. Numer. http://link.springer.com/article/10.1007/s00211-011-0378-z IMA J.

Discretization in time is achieved by Lubich's convolution quadrature method and in space by a Galerkin boundary element method. Itis an open problem whether there exist examples where a bigger value of ρisnecessary for variable steps than for uniform steps or whether our theory yieldsa suboptimal estimate in terms of Let again Θ := (tn)Nn=1 denote the time grid with steps ∆j=tj−tj−1. Numer.

In Section 4.1 we introduced theKronecker products of matrices and their application to tensors of vectors. https://www.researchgate.net/publication/303897790_Runge-Kutta_based_generalized_convolution_quadrature In the limit (notallowed) case ν= 2, the theoretical estimate yields actually an estimate likeO(∆2). Anal., 33(4):1156–1175,2013.[10] M. Scuderi.

Ebene Navigation 3. Springer-Verlag, New York, fourth edition,1975.[7] W. Fast and Stable Contour Integrationfor High Order Divided Differences via Elliptic Functions. Comput.

In Lemma 25 we will derivean alternative representation of tensorial divided differences which mimics therecurrence relation for classical divided differences.These tensorial divided differences allow to express the generalized discreteconvolution (22), (27) This method opens the door for further development towards adaptive time stepping for evolution equations. Numerical experiments with convolution quadratures based on the Radau IIA methods are given on an example of a time-domain boundary integral operator. http://crearesiteweb.net/an-error/analysis-services-an-error-was-encountered-in-the-transport-layer.html IEEE Trans.

Numer. Preprints 20101/20102/20103/20104/20105/20106/20107/20108/20109/201010/201011/201012/201013/201014/201015/201016/201017/201018/201019/201020/201021/201022/201023/201024/201025/201026/201027/201028/201029/201030/201031/201032/201033/201034/201035/201036/201037/201038/201039/201040/201041/201042/201043/201044/201045/201046/201047/201048/201049/201050/201051/201052/201053/201055/201056/201057/201058/201059/201060/201061/201062/201063/201064/201065/201066/201067/201068/201069/201070/201071/201072/201073/201074/201075/201076/201077/201078/201079/2010 ContactSitemapImprintPrivacy PolicyHomepage MPI MIS font size: 30.06.2016, 16:11 Max-Planck-Institut für Mathematik in den NaturwissenschaftenAddress:Inselstr. 2204103 LeipzigGermanyContact:Phone: +49 (0) 341 - 9959 - 50Fax: +49 (0) 341 - 9959 Numer.

Hence, ⊖(k,j)(A,B)is regular ifand only if spec (A)∩spec (B) = ∅.

Antennas Propag. 56(8, part 1), 2442–2452 (2008)MathSciNetCrossRefCopyright information© Springer-Verlag 2011Authors and AffiliationsLehel Banjai1Email authorChristian Lubich2Jens Markus Melenk31.Max Planck Institute for Mathematics in the SciencesLeipzigGermany2.Mathematisches InstitutUniversität TübingenTübingenGermany3.Institut für Analysis und Scientific Computing, TU WienViennaAustria About this article Print Sci. and Sauter, S.: Rapid solution of the wave equation in unbounded domains, SIAM J. Theory, 1:46–69, 2005.[5] S.

Time domain boundary integral operators for wave propagation problems have Laplace transforms that satisfy bounds of the above type. Math. 107(4), 589–614 (2007) MathSciNetMATHCrossRef6. N. Check This Out Lubich, Ch.: On convolution quadrature and Hille-Phillips operational calculus.

Further savings can be achieved by noticing that in some cases the solutions of many of the Helmholtz problems can be replaced by zero. Numer. Then thediscretization of (21) by Runge-Kutta Generalized Convolution Quadrature isgiven byKρ∂Θt∂ρtϕ(n):= 12πiγKρ(z)u(n)ρ(z)dz, n = 1,2, . . . (22)with u(0)ρ=0andu(n)ρ(z) = es·u(n−1)ρ(z)R(∆nz)+∆n(I−z∆nA)−1A∂ρtϕ(n), n = 1,2, . . . .The approximation of Numer.

BIT, 51(3):483–496, 2011.[2] L. Springer, Berlin (1996)8.Kress W., Sauter S.: Numerical treatment of retarded boundary integral equations by sparse panel clustering. SIAM J. This requires to reformulate the con-tour integrals via tensorial divided differences which we will introduce and theproof of a Leibniz rule for tensorial divided differences to derive the associativityproperty for the

Banjai, L., Sauter, S.: Rapid solution of the wave equation in unbounded domains. SIAM J.